Package: svylme 1.5-2
svylme: Linear Mixed Models for Complex Survey Data
Linear mixed models for complex survey data, by pairwise composite likelihood, as described in Lumley & Huang (2023) <arxiv:2311.13048>. Supports nested and crossed random effects, and correlated random effects as in genetic models. Allows for multistage sampling and for other designs where pairwise sampling probabilities are specified or can be calculated.
Authors:
svylme_1.5-2.tar.gz
svylme_1.5-2.zip(r-4.5)svylme_1.5-2.zip(r-4.4)svylme_1.5-2.zip(r-4.3)
svylme_1.5-2.tgz(r-4.4-any)svylme_1.5-2.tgz(r-4.3-any)
svylme_1.5-2.tar.gz(r-4.5-noble)svylme_1.5-2.tar.gz(r-4.4-noble)
svylme_1.5-2.tgz(r-4.4-emscripten)svylme_1.5-2.tgz(r-4.3-emscripten)
svylme.pdf |svylme.html✨
svylme/json (API)
# Install 'svylme' in R: |
install.packages('svylme', repos = c('https://tslumley.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tslumley/svylme/issues
- A_gen - Milk production
- milk_subset - Milk production
- nzmaths - Maths Performance Data from the PISA 2012 survey in New Zealand
- pisa - Data from the PISA international school survey
Last updated 4 months agofrom:426d6edd43. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | OK | Oct 26 2024 |
R-4.5-linux | OK | Oct 26 2024 |
R-4.4-win | OK | Oct 26 2024 |
R-4.4-mac | OK | Oct 26 2024 |
R-4.3-win | OK | Oct 26 2024 |
R-4.3-mac | OK | Oct 26 2024 |
Exports:boot2lmesvy2lmesvy2relmer
Dependencies:bootDBIlatticelme4MASSMatrixminqamitoolsnlmenloptrnumDerivRcppRcppArmadilloRcppEigensurveysurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Resampling variances for svy2lme | boot2lme vcov.boot2lme |
Milk production (subset) | A_gen milk_subset |
Maths Performance Data from the PISA 2012 survey in New Zealand | nzmaths |
Data from the PISA international school survey | pisa |
Linear mixed models by pairwise likelihood | coef.svy2lme svy2lme |
Linear mixed models with correlated random effects | svy2relmer |